小行星带(asteroidbelt)是太阳系内介于火星和木星轨道之间的小行星密集区域,由已经被编号的120,437颗小行星统计得到,98.5%的小行星都在此处被发现。由于这是小行星最密集的区域,估计为数多达50万颗,这个区域因此被称为主带,通常称为小行星带。距离太阳约2.17-3.*天文单位的空间区域内,聚集了大约50万颗以上的小行星,形成了小行星带。这么多小行星能够被凝聚在小行星带中,除了太阳的万有引力以外,木星的万有引力起着更大的作用。
小行星带由原始太阳星云中的一群星子(比行星微小的行星前身)形成。但是,因为木星的重力影响,阻碍了这些星子形成行星,造成许多星子相互碰撞,并形成许多残骸和碎片。小行星带内最大的三颗小行星分别是智神星、婚神星和灶神星,平均直径都超过400公里;在主带中仅有一颗矮行星—谷神星,直径约为950公里;其余的小行星都较小,有些甚至只有尘埃大小。小行星带的物质非常稀薄,目前已经有好几艘太空船安全通过而未曾发生意外。在主带内的小行星依照它们的光谱和主要形式分成三类:碳质、硅酸盐和金属。另外,小行星之间的碰撞可能形成拥有相似轨道特征和成色的小行星族,这些碰撞也是产生黄道光的尘土的主要来源。
发现历史
发现第一颗小行星谷神星的皮亚齐。1766年德国天文学家提丢斯(j.titius)偶然发现一个数列:(n+4)/10,将n=0,3,6,12,……代入,可相当准确地给出当时已知行星的轨道半径。这件事起初未引起人们的注意,后来柏林天文台的台长波德(j.bode)得知后将它发表,乃为天文界所知。在1781年发现天王星之后,进一步证实公式有效,波德于是倡议在火星和木星轨道之间也许还有一颗行星。1801年,西西里和皮亚齐(g.pzzi)在例行的天文观测中偶然发现在2.77au处有个小天体,即把它命名为谷神星(ceres)。
1802年,天文学家奥伯斯(h.olbere)在同一区域内又发现另一小行星,随后命名为智神星(pals)。威廉·赫歇尔就建议这些天体是一颗行星被毁坏后的残余物。到了1807年,在相同的区域内又增加了第三颗婚神星和第四颗灶神星。由于这些天体的外观类似恒星,威廉·赫歇尔就采用希腊文中的语根aster-(似星的)命名为asteroid,中文则译为小行星。
拿破仑战争结束了小行星带发现的第一个阶段,一直到1845年才发现第五颗小行星义神星。紧接着,新小行星发现的速度极速增加,到了1868年中发现的小行星已经有100颗,而在1891年马克斯·沃夫引进了天文摄影,更加速了小行星的发现。1923年,小行星的数量是1,000颗,1951年到达10,000颗,1982年更高达100,000颗。现代的小行星巡天系统使用自动化设备使小行星的数量持续增加。
在小行星带发现后,必须要计算它们的轨道元素。1866年,丹尼尔·柯克伍德宣布由太阳算起,在某些距离上是没有小行星存在的空白区域,而在这些区域上绕太阳公转的轨道周期与木星的公转周期有简单的整数比。柯克伍德认为是木星的摄动导致小行星从这些轨道上被移除。
在1918年,日本天文学家平山清次注意到小行星带上一些小行星的轨道有相似的参数,并由此形成了小行星族。到了1970年代,观察小行星的颜色发展出了分类的系统,三种最常见的类型是c-型(碳质)、s-型(硅酸盐)和m-型(金属)。2006年,天文学家宣布在小行星带内发现了彗星的族群,而且推测这些彗星可能是地球上海洋中水的来源。
起源演化
在太阳系形成初期,因吸积过程的碰撞普遍,造成小颗粒逐渐聚集形成更大的丛集,一旦聚集到足够的质量(即所谓的微星),便能用重力吸引周围的物质。这些星子就能稳定地累积质量成为岩石行星或巨大的小行星ida和它的卫星,伽利略号探测器拍摄气体行星。小行星带的形成之谜不知道何时才能破解。不过,越来越多的天文学家认为,小行星记载着太阳系行星形成初期的信息。因此,小行星的起源是研究太阳系起源问题中重要的和不可分割的一环。
主流观点
关于形成的原因,比较普遍的观点是在太阳系形成初期,由于某种原因,在火星与木星之间的这个空挡地带未能积聚形成一颗大行星,结果留下了大批的小行星。
目前被认同的行星形成理论是太阳星云假说,认为星云中构成太阳和行星的材料,尘埃和气体,因为重力陷缩而生成旋转的盘状。在太阳系最初几百万年的历史中,因吸积过程的碰撞变得黏稠,造成小颗粒逐渐聚集形成更大的丛集,并且使颗粒的大小稳定的持续增加。一旦聚集到足够的质量—所谓的微星—便能经由重力吸引邻近的物质。这些星子就能稳定的累积质量成为岩石的行星或巨大的气体行星。
在平均速度太高的区域,碰撞会使星子碎裂而抑制质量的累积,阻止了行星大小的天体生成。在星子的轨道周期与木星的周期成简单整数比的地区,会发生轨道共振,会因扰动使这些星子的轨道改变。在火星与木星之间的空间,有许多地方与木星有强烈的轨道共振。当木星在形成的过程中向内移动时,这些共振轨道也会扫掠过小行星带,对散布的星子进行动态的激发,增加彼此的相对速度。星子在这个区域(持续到现在)受到太强烈的摄动因而不能成为行星,只能一如往昔的继续绕着太阳公转,而且小行星带可以视为原始太阳系的残留物。
小行星gaspra,伽利略号探测器拍摄目前小行带所拥有的质量应该仅是原始小行星带的一小部分,以电脑模拟的结果,小行星带原来的质量应该与地球相当。主要是由于重力的扰动,在百万年的形成周期过程中,大部份的物质都被抛出去,残留下来的质量大概只有原来的千分之一。
当主带开始形成时,在距离太阳2.7au之处形成了一条温度低于水的凝结点线—&“雪线&“,在这条线之外形成的星子就能够累积冰。在小行星带生成的主带彗星都在这条线之外,并且是造成地球海洋的主要供应者。
因为大约在40亿年前,小行星带的大小和分布就已经稳定下来(相对于整个太阳系),也就是说小行星带的主带在大小上已经没有显著的增减变化。但是,小行星依然会受到许多随后过程的影响,像是:内部的热化、撞击造成的熔化、来自宇宙线和微流星体轰击的太空风化。因此,小行星不是原始的,反而是在外面古柏带的小行星,在太阳系形成时经历的变动比较少。
主带的内侧界线在与木星的轨道周期有4:1轨道共振的2.06au之处,,在此处的任何天体都会因为轨道不稳定而被移除。在这个空隙之内的天体,在太阳系的早期历史中,就会因为火星(远日点在1.67au)重力的扰动被清扫或抛射出去。
其他解释
最早提出的成因解释是爆炸说,是太阳系第十大行星亿万年前的大爆炸分解成了千万颗小行星。这种小行星mathilde,近地小行星探测器拍摄理论一下子就解决了两个难题:小行星带的产生和为什么没有第十行星。但这种设想最大的缺陷是行星爆炸的原因说不清楚。也有人认为,木星与火星之间的轨道上本来就存在着5-10颗同谷神星大小相似的体积相对较大的小行星。这些行星通过长时间的相互碰撞逐渐解体,越来越小,越分越多,形成了大量的碎片,也就是我们目前观测到的小行星带。这些解释各有道理,但都不能自圆其说,因而都未形成定论。
家族和群组
参看词条小行星族。
在主带的小行星大约有三分之一属于不同家族的成员。同一家族的小行星来自同一个母体的碎片,共享着相似的轨道元素,像是半长轴、离心率、轨道倾角,还有相似的光谱。由这些轨道元素的图型显示,在主带中的小行星集中成几个家族,大约有20–30个集团可以确定是小行星族,并且可能有共同的起源。还有一些可能是,但还不是很确定的。小行星族可以借由光谱的特征来进行辨认。较小的小行星集团称为组或群。
在主带内著名的小行星族(依半长轴排序)有花神星族、司法星族、鸦女星族,曙神星族、和司理星族。最大的小行星族是以灶神星为主的灶神星族(谷神星是属于gefion族的闯入者),相信是由形成灶神星上陨石坑的撞击造成的,而且hed陨石可能也是起源自这一次的撞击。
在主带内也被找到三条明显的尘埃带,他们与曙神星、鸦女星、司理星有相似的轨道倾角,所以可能也属于这些家族。
边缘
在小行星带的内缘(距离在1.78和2.0天文单位之间,平均概念图,曙光号和小行星带半长轴1.9天文单位)有匈牙利族的小行星。们以匈牙利为主,至少包含52颗知名的小行星。匈牙利族的轨道都有高倾角,并被4:1的柯克伍德空隙与主带分隔开来。有些成员属于穿越火星轨道的小行星,并且可能是因为火星的扰动才使这个家族的成员减少。
另一个在小行星主带外缘的高倾角家族是福后星族,轨道在距离太阳2.25到2.5天文单位之间。主要由s-型的小行星组成,在靠近匈牙利族的附近有一些e-型的小行星。
最大家族之一的花神星族已知的成员超过800颗,可能是在十亿年前的撞击后形成的,主要分布在主带的内侧边缘。
网址已经更换, 最新网址是:sspwk.me 关于解决UC浏览器转码章节混乱, 请尽可能不要用UC浏览器访问本站,推荐下载火狐浏览器, 请重新添加网址到浏览器书签里
目前上了广告, 理解下, 只有这样才可以长期存在下去, 点到广告返回不了可以关闭页面重新打开本站,然后通过阅读记录继续上一次的阅读
搜索的提交是按输入法界面上的确定/提交/前进键的